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THE RADAR ABSORPTION EFFECT CAUSED UY 
VERY THIN  PLASMA. SHEATHS 

ABSTRACT 

The  radar absorption effect has been observed in full scale 

reentry vehicle tests and in laboratory and field studies of hypersonic 

vehicle flow field observables.     The usual manifestation of this effect 

is  the drastic  reduction of the  radar cross  section of the vehicle and 

its associated flow field under certain conditions.     Ballistic range 

studies of this effect have  shown significantly large absorption to 

occur for  even very thin plasma  sheaths.     This  is  inexplicable in 

terms of the theory that explains the full  scale vehicle results.    A 

more advanced theory is presented here,   which has the potential for 

explaining the anomalous absorption caused by very thin plasma layers 

covering blunt metallic bodies.     In essence,   it is shown that the ano- 

malous absorption may be a diffraction effect caused by the gradient 

of the electron density in the plasma sheath around the body.   That is, 

the effect occurs when the body is only partially covered by an over- 

dense plasma sheath.     This plasma layer can be very thin compared to the 

wavelength of the radar wave and still cause a significant decrease in 
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the radar cross section.    These results are illustrated by several 

theoretical graphs that show the dependence of the radar cross section 

of a metal sphere partially covered by a plasma layer on the size, 

thickness and properties of the layer.    Finally,   this theory is applied 

to predict the anomalous absorption observed in ballistic range studies. 

The large amount of absorption observed experimentally is correctly 

predicted by this theory,   but an accurate verification of ail the details 

of the behavior as a function of ambient air density and body speed 

awaits more extensive and detailed flow field computations. 



THE RADAR ABSORPTION EFFECT CAUSED BY 
VERY THIN PLASMA SHEATHS 

INTRODUCTION 

The radar absorption effect has been observed in full-scale 

reentry events,   in small-scale field tests,   and in laboratory studies. 

The usual manifestation of the radar absorption effect is the drastic 

reduction of the  radar cross section of the vehicle and its surrounding 

flow field under certain flight conditions.     The- decrease in radar cross 

section is of the order of 10 to 20 db.     This effect has been observed 

in two different flight regimes.     It has been observed at high altitudes 

during reentry of the MIT Trailblazer Vehicle^1).    It has also been 

observed at relatively low altitudes during the reentry of full-scale 

(2) 
reentry vehicles      .     The laboratory observations of this phenomenon 

have been at relatively high ambient air densities and low velocities, 

which corresporids to the low-altitude observations in the full-scale 

(3) 
situation.     These observations have been made at GM DRL       and at 

(4) 
CARDEV   ;. 

Several attempts to explain the radar absorption effect have been 

made.     In the case of the full-scale observations,   these have been 

(5) 
explained qualitatively and quantitatively by Musal      .     This was done 

on the basis of a simple geometrical optic a approach.     Radar wave 

I 



destructive interference and real power absorption in the plasma sheath 

surrounding the nose cone was  shown theoretically to give rise to the 

amount of absorption,   and the altitude at which it occurred,   actually 

measured during the  reentry.     In this  situation the thickness of the 

plasma sheath was of the order of one-half the wavelength of the radar 

wave.     This is approximately the minimum thickness for which the 

simple  geometrical optics explanation will predict large amounts of 

absorption.     In the case of the MIT Traüblazer experiments,   Murphy*1) 

has offered an explanation for the high altitude radar absorption which 

occurs at relatively high velocities.     His explanation is based on the 

fact that the plasma layer  surrounding the vehicle may be much thicker 

than the  shock stand-off distance because of ultraviolet photoionization 

of the air in front of the shock.     This effectively creates a large   cloud 

of low density ionization around the vehicle.    There is also gradual 

radial gradient of the electron density in this cloud.    At the radar 

frequency used in this experiment,   a  strong interaction between the 

wave and the ionization cloud was experienced.     The net effect was to 

decrease the backscattering from the entire structure.     The ballistic 

range experimental results obtained at GM DRL and at CARDE are not 

explainable by either the  simple geometrical optics approach or by means 

of the photoionization assumption.    The first explanation is not 



applicable because the shock layer is too thin.     Calculations have 

shown that in order to predict the amount of absorption experimentally 

observed,   it would be necessary to assume that the shock layer   was 

three times as thick as was actually measured.     The possibility that 

photoionization would contribute toward  a larger ionization cloud 

around the body was disproved by measurements of the amount of 

precursor ionization outside of the shock front.     This was done in a 

series of measurements at GM DRL 

In order to explain the absorption effect for the thin plasma sheaths 

that are present in the ballistic range measurements  several oth.;r 

mechanisms were investigated.     The possibility that the angular gra- 

dient of the electron density around tb« body might cause focusing or 

defocusing effects was investigated.    Using a geometrical optics 

approach,   MusaP7' showed that the refractive effect of the gradient can 

cause significant focusing and defocusing of the backscattered radar 

wave.    However,   it was  shown that in order to predict significantly large 

amounts of absorption by this mechanism,   the plasma layer again had 

to be approximately two or three times as thick as was measured. 

The angular gradient in electron density can be considered from 

another viewpoint.     This is the diffractive aspect of such a non-uniform 

layer.     The results of this approach will be outlined here since they 

appear to contain the basic elements for the explanation of the radar 
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absorption effect caused by very thin plasma layers on metallic bodies. 

'a I 

THEORY 

A theory that appears to offer a possible explanation for large 

decreases  in the radar cross  section of a metallic body when it is 

partially covered by a thin plasma layer is presented here.      This 

theory depends on the diffractive effect of angular gradients in the plasma 

layer around the body,   and predicts large decreases in radar cross 

section caused by very thin plasma layers. 

The  radar cross  section of a body can be predicted theoretically 

in exact form if the tangential components of the electric and magnetic 

fields induced on the  surface of the body by tne incident radar wave 

are known exactly (see   for example,   Mentzerv   ')•    In the practical 

situation,   the exact fields are usually not known.     Thus  some approximate 

method must be used to obtain approximate values of these fields when the 

body and the incident wave are specified.     The well-known physical 

optics approximation is often used when the body is metallic.     In essence, 

this approximation takes for the tangential induced fields on the surface 

of the body a magnetic and an electric field which are just equal and 

opposite,   respectively,   to the tangential components of the magnetic 

and electric fields of the incident wave.     A suitable integration of these 

i 



fields over the illuminated surface of the body then gives the far field 

scattered wave intensity,   from which the radar cross  section is deter- 

mined.    In order to extend this theory to the case of plasma covered 

metallic bodies,   it has been assumed that the effect of the plasma layer 

is merely to change the phase and amplitude of these induced fields. 

If the layer is very thia this appears to be a reasonably valid approxi- 

mation.    The far field scattered wave is then computed in the same manner 

as in the usual physical optics approach. 

When this technique is applied to the case of a metal sphere 

covered by a thin plasma layer the resultant integral for the nose-on 

backscattering radar cross section   (  CT   )   can be shown to be 

^     2 J (rTM-rrM,-fz) 

r^M and        ^-g-       are the     TM   and TE   mode reflection 

coe 

TM 

fficients for a metal-backed plasma layer,   given by 

r 
rM 
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and      "A        is the radar wavelength,   a is the radius of the sphere,   and   h 

is the thickness of plasma layer.    The plasma properties are given by 

the normalized plasma frequency    -flp       and the normalized electron 

collision frequency    -if-^       .   which are 
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where   oJ       is the radar angular frequency   ( Z fT T   )      ,     T^       is 

the electron collision frequency,      cJ^ is the plasma frequency,   ^ 

is the electric charge carried by an electron and   m   is its mass, 

Kl       is the electron number density,   and     € is the capacitivity 

of free-space.      It can be shown that if the reflection coefficients of the 

layer are not functions of the angle of incidence,   then the above integral 

can be explicitly evaluated in closed form.    This is not the case for a 

plasma layer.    Consequently,   the integral must be evaluated by numerical 

integration. 

Some typical results of this approach are shown in Figures  1 

and 2,    These figures show the radar cross section of a metal sphere 

as a function of the amount of the sphere covered by a uniform thin layer 

of plasma.    Figure  1 shows the change in the radar cross section as 

the layer becomes thicker.    It can be seen that a layer of only 1/10 of 

a wavelength in thickness is necessary to give appreciable changes in the 

radar cross section as the amount of angular coverage is changed. 

Figure 2 shows the change in the radar cross section as a layer of 

constant thickness changes in its electron density.    A change in electron 



density from critical density to 100 times critical density is en- 

compassed. 

In order to gain some confidence in the validity of this theory, 

several experimental measurements have been made involving more 

controllable configurations and materials.     These experimental 

measurements have shown that the theory is remarkable good,   pro- 

vided that one does not consider bodies which have a large extent of 

surface nearly parallel to the direction of incidence of the radar wave. 

APPLICATION 

The diffraction theory will now be applied to the ballistic range 

experimental situation.    A preliminary attempt to predict theoretically 

the amount of absorption obtained in the GM DRL ballistic range studies 

of the radar absorption effect is presented here.     In order to do this 

properly,   it is necessary to know the  spatial variation of the electron 

density and collision frequency throughout the entire shock layer around 

the body.     The computation of these quantities in the flow field is a very 

lengthy aerodynamic calculation.    The flow field calculation must be 

repeated at each speed and/or pressure for which the radar cross section 

is to be calculated.    In order to avoid this much extensive work at the 

present time,  we have taken some representative approximate variations 
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of the flow field properties for use in the preliminary radar cross 

section calculations.    The thickness of the plasma layer was taken 

to be the thickness of the overdense region of the plasma sheath 

around the body.    The electron density and collision frequency within 

this overdense region were taken to be the values which existed in the 

stagnation region for the speed and ambient pressure considered. 

In order to obtain the dependence of the radar cross  section on body 

speed,   the way in which this overdense region thickens and spreads 

over the body as a function of speed was approximated by extrapo- 

lation of limited flow field data      .     This approach only approximates 

the actual flow field configuration.    Using this approach,   the radar 

cross section was calculated as a function of velocity for the ambient 

pressure used in the ballistic range studies.     The theoretical results 

are shown in Figure  3,   along with the experimental data.    It can be 

seen that a large decrease in the radar cross section,   of the order 

of 15 db,   is obtained with the new theory.    Previous theories gave 

approximately 3 db of absorption under these conditions.      The details 

of the fluctuations of the radar cross section at high velocities are 

probably not significant because the flow field was only approximated 

and the assumptions that were made were not very good for such a 

large fractional coverage of the body.    As was pointed out earlier,   the 

I 
I 
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theory itself does not appear to be very accurate in this regime 

either. 

The real significance of this theoretical calculation is that 

a very large decrease in the radar cross section is obtained with only 

a very thin plasma layer.     The details of how the radar cross  section 

varies with speed depend critically on the development of the ionization 

around the body.     Thus there is a need for very good flow field cal- 

culations before exact comparisons between the theoretical and experi- 

mental results can be made.     Work is continuing along the lines of 

improving the diffraction theory used in the prediction of the radar 

cross sections of plasma covered metal bodies,  and in the calculation 

of the flow fields around blunt bodies. 

CONCLUSIONS 

It appears that a theoretical explanation for the large decrease 

in the radar cross section of a metal body caused by a very thin plasma 

sheath has been found.    The decrease depends on partial coverage of 

the body by the plasma layer.    In other words,   it is the angular 

gradients of the plasma properties around the body that cause severe 

diffraction of the radar wave.    This appears to be the explanation for 

the anomalous absorption measured in ballistic range studies.    This 

i 
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effect and its theoretical interpretation,   when more highly refined, 

( 
may   be useful as a flow field diagnostic technique. 
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